Thermally oxidized SiO₂ formation on 4H-SiC substrate by considering the interface reaction kinetics

Shun Nakatsubo, Tomonori Nishimura, Koji Kita, Kosuke Nagashio and <u>Akira Toriumi</u>

> Department of Materials Engineering The University of Tokyo 7-3-1 Hongo, Tokyo 113-8656, Japan

This work was partly presented at SSDM 2011 (Nagoya).

1.Background and Objective

2. Sample Preparation

3. Experimental Results

4. Discussion

5. Conclusion

Effective WF vs. Vacuum WF

Interface Science of SiC

Deal-Grove Model

Objective

To demonstrate high quality SiO₂/SiC interface in thermal oxidation process of SiC

1. Background and Objective

2.Sample Preparation

- **3. Experimental Results**
- 4. Discussion
- **5.** Conclusion

Kinetic Consideration of SiC Oxidation

its rate is Si > C-face SiC >> Si-face SiC.

Kinetic Consideration of SiC Oxidation

Metal-oxide-semiconductor capacitors formed by oxidation of polycrystalline silicon on SiC

J. Tan, M. K. Das, J. A. Cooper, Jr. and M. R. Melloch^{a)} School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907-1285

(Received 27 January 1997; accepted for publication 28 February 1997) APL 70 (1997) 2280.

Oxidation of deposited thick Si on SiC in high temperature also causes oxidation of SiC.

Sample Preparation

Wafers

Si- and C-face 4H-SiC 5~6µm epi layer N-dope ~1E16cm-3

Main process flow

Si deposition(~3 nm) Thermal oxidation / 800° C, dry O₂ 5, 15, 50 min Back metallization (Ni) PMA / 940° C, N₂, 5 min HfO₂ deposition(~10 nm) PDA / 500° C, 0.1% O₂, 30 sec Au electrode

Why HfO₂?

No frequency dispersion, nor hysteresis

IEEE EDS MQ WMNACT31 (TIT)

12

- **1. Background and Objective**
- 2. Sample Preparation

3.Experimental Results

- 4. Discussion
- **5.** Conclusion

Comparison between Si-face and C-face SiC - Oxidation Rate -

Just a monolayer SiO2 if any.

Fig. 3

Comparison between Si-face and C-face SiC - Bi-directional C-V Characteristics -

Si-face

C-face

Dry oxidation at 800°C for 50 min

On Si-face, there are little frequency dependence and hysteresis, and V_{FB} is close to the ideal value.

- **1. Background and Objective**
- 2. Sample Preparation
- **3. Experimental Results**
- 4.Discussion
- **5.** Conclusion

A big difference between Si-face and C-face SiC

Although oxidation rate is significantly different, a same amount of C should be introduced into a given thickness of SiO_2 .

On Si-face, no carbon will be introduced Into SiO_2 , because of negligible oxidation of Si-face SiC.

We can make a carbon-free SiO₂ on Si-face SiC by low temperature oxidation of Si/SiC.

Conclusion and Future Outlook

- Good C-V characteristics in SiC MOS capacitors have been demonstrated simply by oxidation in dry O₂ at 800°C, on the basis of thermodynamic and kinetic consideration.
- High-k dielectric films will be applicable for SiC gate stacks by using stable interfacial SiO₂ layer.
- SiC interface research is old but will be a hot topic.
- Si-face is much better than C-face due to a considerably lower oxidation rate in the present method.
- MOSFET fabrication and characterization will be the next challenge.